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Abstract

During design optimization, geometry modifications pose

challenges for mesh generation. We propose a method

that combines spline-based representations with an au-

tomated structured mesh generation. The approach pro-

vides a reduction in the computational complexity com-

pared to conventional meshing techniques, while allowing

for seamless integration of geometric changes into the

mesh. The concept is implemented in Gmsh and GetDP.

1 Introduction

In the design process of electrical machines, their geom-

etry is frequently modified, see for example [1]. The ge-

ometry is represented by Computer-aided design (CAD)

kernels which rely on boundary representations (BREP)

based on Non-Uniform Rational B-Splines (NURBS) [2].

However, simulators based on finite elements, need volu-

metric or surface meshes in 3d or 2d, respectively. There-

fore, shape modifications come with several challenges.

On the one hand, common freeform optimization that

moves mesh nodes does not result in proper CAD de-

scriptions. On the other hand, BREP-driven freeform opti-

mization keeps the CAD representation but may require

remeshing or mesh morphing algorithms. To this end,

Hughes et al. [3] proposed isogeometric analysis (IGA). It

was later adapted for simulation and optimization of electric

machines, e.g. in [4]. The idea is to use the same spline

basis functions for geometry and solution representation.

However, this requires dedicated simulators.

Here, we suggest a compromise: the geometry is repre-

sented by volumetric (bivariate in 2d or trivariate in 3d)

splines and they are used to automatically generate (poly-

nomially curved) structured meshes by pushing nodes and

their interconnections through the spline geometry map-

ping. We demonstrate this using Gmsh and GetDP [5].

2 Volumetric spline descriptions

As discussed above, CAD models are typically repre-

sented by NURBS, in particular, since they are well suited

Fig. 1: Bivariate spline model of a machine geometry.

to precisely describe conic sections, offering local smooth-

ness control and providing an intuitive framework for defin-

ing curves and surfaces [2]. Based on the standard spline

theory described in [6], one constructs the basis of B-

Splines from an open knot vector Ξ = [ξ1, . . . , ξNξ
] ∈

[0, 1]Nξ . We denote by Bp
i ∈ Sp(Ξ) the i-th B-Spline basis

function of degree p. The NURBS basis is given as

Np
i (u) =

ωiB
p
i (u)∑

j ωjB
p
j (u)

(1)

with an additional weighting factor ωi. In CAD, boundary

representations are typically used, i.e., a two-dimensional

machine model is represented by curves from the refer-

ence to the physical domain

Fn(u) =
∑
i

Np
i (u)Pn,i (2)

wherePn,i ∈ R2 are the control points of curve n. However,
we discuss here the case of bivariate spline representa-

tions. We use the multi-patch decomposition S =
⋃Ns

n=1 Sn.

The Sn are called patches and map from the unit square

to the physical space

Rp,q
i,j (u, v) =

Bp
i (u)B

q
j (v)wi,j∑n

k=0

∑m
l=0 B

p
k(u)B

q
l (v)wk,l

(3)

with degrees p, q and weights wn,i,j such that

Sn(u, v) =
∑
i

∑
j

Rp,q
i,j (u, v)Pn,i,j (4)
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Fig. 2: Straight-sided mesh pushed through mapping.

is a surface given in terms of the control points Pn,i,j ∈
R2. Fig. 1 shows an exemplary machine model based on

bivariate spline patches.

3 Mesh creation and simulation

Let us discuss the non-curved case in two dimensions

first: we define a set of equidistant points in the refer-

ence domain, that is, un = l/Nu with l = 0, . . . , Nu. This
allows us to define their Cartesian product [u1, · · · , uNu

]×
[u1, · · · , uNu

]. These nodes, along with their interconnect-

ing edges (e.g., from (ui, uj) to (ui, uj+1)), form a mesh

in the reference domain. The points can be easily pushed

through the mapping to obtain the points

(xn,i, yn,j) = Sn(ui, uj) for 0 ≤ i, j ≤ N (5)

in the physical domain. Now, using the same node con-

nectivity as before, we create a straight-sided mesh in

physical space, which contains, for example, the edge

from (xn,i, yn,j) to (xn,i, yn,j+1). The only remaining task

is to identify the interface nodes of neighboring patches.

The mesh created from the geometry of Fig. 1 is shown

in Fig. 2. Similarly, three-dimensional meshes and poly-

nomially curved elements can be created. The latter are

obtained by evaluating the derivatives at the points (ui, uj)
or additional points. The second approach is the natural

way to export in Gmsh, see [7, 10.2.2].

Fig. 3 shows the result of a Laplace problem computed by

GetDP on the mesh from Fig. 2. The full paper will demon-

strate the benefits in the context of shape optimization.

4 Discussion

The complexity of this procedure is very low, i.e., linear

in the number of nodes NsN
2
u . In addition, shape modifi-

cations of the spline geometry are automatically reflected

in the mesh. On the other hand, the mesh is structured

and depends on the geometry parametrization, i.e., even

though the mesh is equidistant in the reference domain,

the physical mesh can have arbitrarily high aspect ratios

depending on (the derivatives of) the spline mappings. Al-

though mappings can be optimized, e.g., based on the

Winslow functional [8], spline geometries must be created

Fig. 3: GetDP result for Laplace problem on rotor domain.

with care, possibly by hand. However, this shall pay off,

for example, in large-scale optimization runs.
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